
Submitted to:
SR 2017

© F. Belardinelli, R. Condurache, C. Dima, W. Jamroga & A. V. Jones
This work is licensed under the
Creative Commons Attribution License.

Bisimulations for Verifying Strategic Abilities
with an Application to ThreeBallot (Communication)

Francesco Belardinelli
IBISC, Université d’Evry & IRIT Toulouse, France

belardinelli@ibisc.fr

Rodica Condurache
LACL, Université Paris-Est Créteil, France

rodica.bozianu@gmail.com

Cătălin Dima
LACL, Université Paris-Est Créteil, France

dima@u-pec.fr

Wojciech Jamroga
Institute of Computer Science, Polish Academy of Sciences

w.jamroga@ipipan.waw.pl

Andrew V. Jones
Vector Software, Inc., London, UK

andrew.jones@vectorcast.com

We propose a notion of alternating bisimulation for strategic abilities under imperfect information.
The bisimulation preserves formulas of ATL for both the objective and subjective variants of the
state-based semantics with imperfect information, which are commonly used in the modeling and
verification of multi-agent systems. Furthermore, we apply the theoretical result to the verification
of coercion-resistance in the three-ballot voting system, a voting protocol that does not use cryptog-
raphy. In particular, we show that natural simplifications of an initial model of the protocol are in
fact bisimulations of the original model, and therefore satisfy the same ATL properties, including
coercion-resistance. These simplifications allow the model-checking tool MCMAS to terminate on
models with a larger number of voters and candidates, compared with the initial model. This paper
has been accepted for publication at AAMAS2017.

1 Introduction

The realm of formal languages for expressing strategic abilities of rational agents has witnessed a steady
growth in recent years [8, 9, 24]. Among the most significant contributions we mention alternating-
time temporal logic [2], strategy logic [13, 33], coalition logic [38]. These languages include modal
operators, indexed to coalitions A ⊆Ag of agents, to express that the agents in A have a strategy to enforce
a certain outcome, regardless of the behavior of the agents in Ag∖A. These syntactical features allow
us to express winning conditions in multi-player games, notions of equilibrium (e.g. Nash), strategy-
proofness [13, 34].

However, if these logics for strategies are to be applied to the specification and verification of multi-
agent systems [22, 28, 31], they need to be coupled with efficient model checking techniques. Unfortu-
nately, while in contexts of perfect information we benefit from tractable algorithms for model checking
[2], the situation is rather different once we consider imperfect information. In contexts of imperfect
information the complexity of the verification task ranges between ∆

P
2 -completeness to undecidability,

depending on whether we allow for perfect recall [20, 26]. In this setting it is crucial to develop comple-
mentary model checking techniques, in order to make the problem amenable.

In this line of research abstractions have proved to be a valuable tool for efficient verification [14, 15].
In this approach the concrete system S to be verified is abstracted into a “simpler” model SA, which typ-
ically contains “less” transitions and therefore is “easier” to check in principle. Then, the verification

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Bisimulations for Verifying Strategic Abilitieswith an Application to ThreeBallot

result is transferred from the abstract SA to the concrete S by virtue of some preservation result. Normally,
preservation is guaranteed by proving that the abstract SA is (bi)similar to S. (Bi)simulations are a pow-
erful tool to analyze the expressiveness of modal languages, starting with van Benthem’s characterisation
of modal logic as the bisimulation-invariant fragment of first-order logic [6]. However, (bi)simulations
are a lot less understood in logics for strategies, where they have been studied mostly for contexts of
perfect information [3, 23, 1], see also [44] for a variant of bisimulation for a probabilistic version of
ATL with imperfect information relations.

In this paper we advance the state-of-the-art by introducing (bi)simulations for alternating-time tem-
poral logic (ATL) under imperfect information. We prove that these (bi)simulations preserve the inter-
pretation of formulas in ATL, when interpreted with imperfect information and imperfect recall, for both
the objective and subjective semantics [8, 9]. Most interestingly for MAS verification, we apply these
(bi)simulations to the abstraction of a class of electronic voting protocols without encryption.

Unlike the alternating bisimulations from [3], our bisimulations are relations defined between action
profiles defined on the common knowledge neighbourhood of a coalition of agents at a global state. This
is necessary since in ATL with imperfect information, agents make use of uniform strategies, which
prescribe the same action for observably identical states, and the appropriate equivalence relation that
extends agent indistinguishability to a set of agents is the common knowledge relation.

Related Work. Electronic voting has increasingly been considered as a robust alternative to paper-
based voting due to a number of advantages it offers: accessibility, availability, voter turnout, less expen-
sive and easier to use than paper voting, faster and more accurate ballot counting and results. However,
electronic voting poses a number of challenges, some of which are common also to paper voting, but
in a more technological setting: resistance and resilience to coercion and other types of fraud, secrecy,
anonymity, verifiability, democracy (the right to vote at most once), accountability. Other issues are
specific to electronic voting: access to internet, privatization, as well as public understanding and trust
[41].

An increasing amount of research has focused recently on the verification of many of these properties
for various types of voting protocols [4, 16]. The frameworks used for modeling and verifying security
properties of voting protocols include, to mention only a few, process calculi such as the applied π-
calculus or CSP [18, 25, 43], rewriting-based approaches [11, 19, 7], approaches based on flat transition
systems etc.

Here we develop a verification procedure for voting protocols that is based on a multi-agent logics
approach. The main advantage of an approach based on multi-agent logics is the provision of a unified
specification language for a variety of properties. A simple example is the variety of english statements of
(non-probabilistic) coercion resistance that is around in the literature, which are usually implemented as
behavioral equivalence properties involving some process algebraic model of the system [16]. However
such approaches do not make it clear what is the system model and what is the property to be verified
on the system. Multi-agent logics allow a clear separation of these two, as well as a wider variety
of properties, involving the existence of attacker strategies. Our results, while only preliminary and
adressing a simplified version of the Three Ballot protocol [40], allow the verification of systems with an
increasing number of voters and candidates when compared with the approach based on process calculi
from [35, 36].

Scheme of the Paper. In Section 2 we introduce the syntax and semantics of ATL interpreted under
imperfect information and imperfect recall. In Section 3 we define (bi)simulation relations in this set-
ting and prove that they preserve the interpretation of formulas in ATL. Then, in Section 4 we present
the three-ballot voting protocol and formalize it as a game structure. In particular, we provide two ab-
stractions of the three-ballot voting protocol and show that all systems are indeed bisimilar. Finally, in

F. Belardinelli, R. Condurache, C. Dima, W. Jamroga & A. V. Jones 3

Section 5 we evaluate the gains in verification time and resources of model checking these abstractions in
comparison to the original model. We conclude in Section 6 by discussing related works and by pointing
to future directions of research. All proofs have been removed for reasons of space.

This paper has been accepted for publication at the 16th International Conference on Autonomous
Agents and Multi-agent Systems (AAMAS2017).

2 The Formal Setting

In this section we introduce the syntax of ATL and its semantics defined on concurrent games structures
with imperfect information. The following definitions and notation are taken from [20]. Concurrent
game structures have been introduced in [2] in a perfect information setting. Here we consider their
version for contexts of imperfect information [27].

Definition 1. A concurrent game structure with imperfect information, or iCGS, is a tuple G = ⟨Ag,AP,S,
s0,{∼i}i∈Ag,Act,d,→,π⟩ such that

• Ag is a nonempty and finite set of agents. Subsets A ⊆ Ag of agents are called groups.
• S is a non-empty set of states and s0 ∈ S is the initial state of G.
• For every i ∈ Ag, ∼i is an equivalence relation on S, called the indistinguishability relation for i.
• Act is a finite non-empty set of actions. A tuple a⃗ = (ai)i∈Ag ∈ ActAg is called a joint action.
• d ∶ Ag×S→ (2Act ∖{∅}) is the protocol function. For every i ∈ Ag, d(i) returns the set of actions

available to agent i at each state. Protocol d satisfies the property that, for all states s,s′ ∈ S and
any agent i, s ∼i s′ implies d(i,s) = d(i,s′), that is, the same actions are available to agent i in
indistinguishable states.

• →⊆ S×ActAg×S is the transition relation such that, for every state s ∈ S and joint action a⃗ ∈ ActAg,

(s, a⃗,s′) ∈→ for some s′ ∈ S iff ai ∈ d(i,s) for every agent i ∈ Ag. We write s
a⃗Ð→ r for (s, a⃗,r) ∈→.

• AP is a set of atomic propositions and π ∶ S→ 2AP is the state-labeling function.

By Def. 1 in a given state s, each agent i ∈ Ag can perform the enabled actions in d(i,s). A joint
action a⃗ fires a transition from state s to some state s′ only if each ai is enabled for agent i in s. Further,
each agent i is equipped with an indistinguishability relation ∼i, with s ∼i s′ meaning that i cannot tell
state s from state s′, i.e., agent i possesses the same information in the two states. In particular, the same
actions are enabled in indistinguishable states.

Given an iCGS G as above, a run is a finite or infinite sequence λ = s0a⃗0s1 . . . in ((S ⋅ActAg)∗ ⋅S)∪(S ⋅
ActAg)ω such that for every j ⩾ 0, s j

a⃗ jÐ→ s j+1. Given a run λ = s0a⃗0s1 . . . and j ⩾ 0, λ [j] denotes the j+1-th
state s j in the sequence. For a group A ⊆ Ag of agents, a joint A-action denotes a tuple a⃗A = (ai)i∈A ∈ ActA

of actions, one for each agent in A. For groups A ⊆ B ⊆ Ag of agents, a joint A-action a⃗A is extended by a
joint B-action b⃗B, denoted a⃗A ⊑ b⃗B, if for every i ∈ A, ai = bi. Also, a joint A-action a⃗A is enabled at state
s ∈ S if for each agent i ∈ A, (aA)i ∈ d(i,s).

We now introduce a notion of strategy adapted to iCGS with imperfect information [27].

Definition 2. A (uniform) strategy for an agent i ∈ Ag is a function σ ∶ S→ Act that is compatible with d
and ∼i, i.e., (i) for every state s ∈ S, σ(s) ∈ d(i,s); and (ii) for all states s,r ∈ S, s ∼i r implies σ(s) = σ(r).

By Def. 2 a strategy in an iCGS has to be uniform in the sense that in indistinguishable states it must
return the same action. Such strategies are also known as observational in the literature on game theory.
Note that in this paper we use memoryless strategies, whereby only the current state determines the

4 Bisimulations for Verifying Strategic Abilitieswith an Application to ThreeBallot

action to perform. This choice is dictated by the application in hand, namely voting protocols, in which
each agent’s memory is encoded in the agent’s state1. Perfect recall strategies with imperfect information
can be defined similarly, as memoryless strategies on tree unfoldings of iCGS. We leave this extension
for future work.

A strategy for a group A of agents is a family σA = {σa ∣ a ∈ A} of strategies, one for each agent in
A. Given groups A ⊆ B ⊆ Ag, a strategy σA for group A, a state s ∈ S, and a joint B-action b⃗B ∈ ActB that
is enabled at s, we say that b⃗B is compatible with σA (in s) whenever σA(s) ⊑ b⃗B. For states s,r ∈ S and

strategy σA, we denote s
σA(s)ÐÐÐ→ r if s

a⃗Ð→ r for some joint action a⃗ ∈ ActAg that is compatible with σA.
We define two notions of outcomes of strategy σA at state s, corresponding to the objective and

subjective interpretation of ATL operators. Fix a state s and a strategy σA for group A.
1. The set of objective outcomes of σA at s is defined as outGob j(s,σA)={λ ∈Run(G) ∣λ [0] = s and ∀ j ⩾

0,λ [j] σA(λ[j])ÐÐÐÐ→ λ [j+1]}.

2. The set of subjective outcomes of σA at s is defined as outGsub j(s,σA) = ⋃
i∈A,s′∼is

outGob j(s′,σA).

Definition 3. The set of ATL formulas ϕ is defined by the following BNF:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ → ϕ ∣ ⟪A⟫Xϕ ∣ ⟪A⟫ϕUϕ ∣ ⟪A⟫ϕRϕ

where p ∈ AP and A ⊆ Ag.
The ATL operator ⟪A⟫ intuitively means that ‘the agents in group A have a (collective) strategy to

achieve . . . ’, where the goals are LTL formulas built by using operators ‘next’ X , ‘until’ U , and ‘release’
R. Note that the ‘release’ operator R cannot be defined in ATL with imperfect information by using
‘until’ U and ‘globally’ G, as it is the case in perfect information contexts [30], so we include it for
completeness. We define A-formulas as the formulas in ATL in which A is the only group appearing in
ATL modalities.

Traditionally, ATL under imperfect information has been given either state-based or history-based se-
mantics, and several variations have been considered on the interpretation of strategy operators. Here we
present both the objective and subjective variants of the state-based semantics with imperfect information
and imperfect recall.
Definition 4. Given an iCGS G, an ATL formula ϕ , the subjective (resp. objective) semantics of ϕ at
state s, denoted (G,s)⊧x ϕ for x=sub j (resp. x=ob j), is defined recursively as follows:
(G,s) ⊧x p iff p ∈ π(s)
(G,s) ⊧x ¬ϕ iff (G,s) /⊧x ϕ

(G,s) ⊧x ϕ ∧ϕ
′ iff (G,s) ⊧x ϕ and (G,s)⊧x ϕ

′

(G,s) ⊧x ⟪A⟫Xϕ iff ∃σA ∀λ ∈ outGx (s,σA),(G,λ [1])⊧x ϕ

(G,s) ⊧x ⟪A⟫ϕUϕ
′ iff ∃σA ∀λ ∈ outGx (s,σA),∃ j ⩾ 0 with (G,λ [j]) ⊧x ϕ

′ and ∀0 ⩽ k < j,(G,λ [k]) ⊧x ϕ

(G,s) ⊧x ⟪A⟫ϕRϕ
′ iff ∃σA ∀λ ∈ outGx (s,σA), either ∀ j⩾0, (G,λ [j]) ⊧x ϕ , or ∃k ⩾ 0 with (G,λ [k])⊧x ϕ

′

and ∀0 ⩽ l ⩽ k,(G,λ [l]) ⊧x ϕ

Remark 5. The knowledge operator Ki can be appended to the syntax of ATL with the following seman-
tics:

(G,s) ⊧x Kiϕ iff ∀s′ ∈ S,s′ ∼i s implies (G,s′) ⊧x ϕ

By considering the subjective interpretation of ATL, this operator can be derived: (G,s) ⊧sub j Kiϕ iff
(G,s) ⊧sub j ⟪i⟫ϕUϕ . There exists no such definition for the knowledge operator in ATL with the objective
semantics.

1Therefore memoryless strategies already encode the agent’s memory of all her past observations.

F. Belardinelli, R. Condurache, C. Dima, W. Jamroga & A. V. Jones 5

3 Simulations and Bisimulations

In this section we define alternating simulation and bisimulation relations on iCGS with imperfect in-
formation and perfect recall. The main result we prove is that alternating bisimulations preserve the
interpretation of formulas in ATL. We start by introducing relevant notions that will be used in the rest
of the paper.

A partial strategy for agent i ∈ Ag is a partial function σ ∶ S → Act such that for each s1,s2 ∈ S, if
s1 ∼i s2 then σ(s1) = σ(s2). We denote the domain of the partial strategy σ as dom(σ). Given a group
A ⊆Ag, a partial strategy profile for A ⊆Ag is a tuple (σi)i∈A of partial strategies, one for each agent i ∈A.
The set of partial strategy profiles for A is denoted PStrA. Given a set U ⊆ S of states and a group A ⊆ Ag,
we denote PStrA(U) the set of partial strategies whose domain is U :

PStrA(U) = {(σi)i∈A ∈ PStrA ∣ dom(σi) =U for all i ∈ A}

Given a group A ⊆ Ag of agents, the collective knowledge relation ∼E
A is defined as ⋃i∈A ∼i, while the

common knowledge relation ∼C
A is the transitive closure (⋃i∈A ∼i)+ of ∼E

A . Then, EGA (q) = {q′ ∈ S ∣ q′ ∼E
A q}

and CGA (q) = {q′ ∈ S ∣ q′ ∼C
A q} are respectively the collective and common knowledge neighbourhoods of

state q for group A in the iCGS G.
Definition 6 (Alternating Simulation). Given two iCGS G = ⟨Ag,AP,S,s0,{∼i}i∈Ag,Act,d,→,π⟩ and G′ =
⟨Ag,AP,S′,s′0,{∼′i}i∈Ag,Act′,d′,→′,π ′⟩ sharing the set of agents Ag and the set of atoms AP, and a group
A ⊆ Ag of agents, a relation ⇛A⊆ S×S′ is an (alternating) simulation for A iff q⇛A q′ implies that

1. π(q) = π
′(q′);

2. For every i ∈ A and r′ ∈ S′, if q′ ∼′i r′ then for some r ∈ S we have that q ∼i r and r ⇛A r′.

3. By denoting CA(q) =CGA (q) and C′
A(q) =CG

′
A (q), there exists a mapping ST = STCA(q),C′A(q′) with

ST ∶ PStrA(CA(q)) → PStrA(C′
A(q′)) such that for any two states r ∈CA(q), r′ ∈C′

A(q′), if r ⇛A r′

then the following two properties hold:

(a) for every partial strategy σA ∈ PStrA(CA(q)) and state s′ ∈ S′, if r′
ST(σA)(r′)ÐÐÐÐÐ→ s′ then there

exists some state s such that r
σA(r)ÐÐÐ→ s and s⇛A s′;

(b) STCA(q),C′A(q′) = STCA(r),C′A(r′).

A relation ⇚⇛A is an (alternating) bisimulation iff both ⇛A and ⇛−1
A = {(q′,q) ∣ q ⇛A q′} are sim-

ulations. Intuitively, by Def. 6 state q′ simulates q, i.e., q ⇛A q′ implies that (1) q and q′ agree on the
interpretation of atoms; (2) q simulates the epistemic transitions from q′; and (3) for every partial strategy
σA, defined on the common knowledge neighborhood CA(q), we are able to find some partial strategy

ST(σA) (the same for all states in CA(q)) such that the transition relations
ST(σA)ÐÐÐÐ→ and

σAÐ→ commute with
the simulation relation ⇛A. Hereafter we often simply talk about simulations and bisimulations.

In order to prove that bisimilar states satisfy the same formulas in ATL, we need the following
auxiliary result.
Proposition 7. If q⇛A q′ then for every uniform strategy σA, there exists a uniform strategy σ

′
A such that

(*) for every infinite run λ
′ ∈ outG

′
x (q′,σ ′

A), for x ∈ {sub j,ob j}, there exists an infinite run λ ∈ outGx (q,σA)
such that λ(i)⇛A λ

′(i) for every i ⩾ 0.
Intuitively, Proposition 7 states that if q′ A-simulates q, then every uniform A-strategy σA in G is

simulated by a uniform A-strategy σ
′
A in G′, in the sense that that all outcomes compatible with σ

′
A in q′

simulate some outcome compatible with σA in q.
By using Proposition 7 we are finally able to give the main preservation result of this paper. Specifi-

cally, Proposition 7 is applied below in the inductive step for A-formulas.

6 Bisimulations for Verifying Strategic Abilitieswith an Application to ThreeBallot

Theorem 8. Given two iCGS G and G′ and states q ∈ S, q′ ∈ S′, suppose that q⇚⇛A q′. Then for every
A-formula ϕ , (G,q) ⊧ ϕ if and only if (G′,q′) ⊧ ϕ .

By Theorem 8 we obtain that bisimilar states preserve the interpretation of ATL formulas. More
precisely, if states q and q′ are A-bisimilar then they satisfy the same A-formulas.

4 Three-Ballot Voting Protocol

ThreeBallot [40, 39] is a voting protocol that strives to achieve some desirable properties, such as
anonymity and verifiability of voting, without the use of cryptography. The protocol proceeds as fol-
lows. Each voter identifies herself at the poll site, and gets a paper “multi-ballot” to vote with. The
multi-ballot consists of three vertical ballots – identical except for ID numbers at the bottom, see Fig-
ure 1 (presented after [40]). The voter fills in the multi-ballot, separates the three parts (called “ribbons)
and casts them in the ballot box. To cast a vote for a candidate, one must mark exactly two (arbitrary)
bubbles on the row of the candidate. To not vote for a candidate, one must mark exactly one of the bub-
bles on the candidate’s row (again, arbitrary one). In all the other cases the vote is invalid. The ballots are
tallied by counting the number of bubbles marked for each candidate, and then subtracting the number
of voters from the count.

Figure 1: Three-ballot showing a vote for Bob Smith

While voting, the voter also receives a copy of one of her three ballots, and she can take it home. After
the election closes, all the ballots are scanned and published on the web bulletin board. In consequence,
the voter can check if her receipt matches a ballot listed on the bulletin board. If no ballot matches the
receipt, the voter can file a protest. Since ThreeBallot is not a cryptographic protocol, it does not heavily
rely on computers and counting can be done directly. Moreover, voters have no responsibility to ensure
the integrity of cryptographic keys, and the security process in their vote is essentially the same as with
traditional ballots.

Properties. ThreeBallot was proposed to provide several properties that reduce the possibility of elec-
toral fraud. Anonymity (cf. e.g. [35]) requires that no agent should ever know how another voter voted,
except in cases when it is inevitable, such as when all the voters voted for the same candidate. Anonymity
is important because it limits the opportunities of coercion and vote-buying. Coercion-resistance requires
that the voter cannot reveal the value of her vote beyond doubt, even if she fully cooperates with the co-
ercer. As a consequence, the coercer has no way of deciding whether to execute his threat (or, dually, pay
for the vote). A preliminary formalization of coercion-resistance and receipt-freeness in ATL has been
presented in [45]. Finally, end-to-end voter verifiability [42, 41] provides a way to verify the outcome of
the election by allowing voters to audit the information published by the system. Typically, the focus is
on individual verifiability: each voter should be able to check if her vote has been taken into account and
has not been altered.

F. Belardinelli, R. Condurache, C. Dima, W. Jamroga & A. V. Jones 7

4.1 iCGS Model

We present here three iCGS models of the ThreeBallot voting system. All these models have been
specified in ISPL (Interpreted System Programming Language), the input language of MCMAS. Several
aspects of the voting system have not been modeled: the ID of each ribbon, the copy of the ribbon which
is given back to each voter after casting his/her ballot, the possibility for voters to verify the presence of
the ribbon they are given back after voting. We model a single attacker who is also a voter and, as such,
must obey the voting protocol and does not interact in any particular way with the other agents.

We focus here only on anonymity and a special kind of coercion-freeness, leaving aside the verifia-
bility. Therefore we do not model the IDs or the copies of the ribbons given as ”receipts” after voting..

In the iCGS below, each agent is represented by means of its local variables and their evolution. The
vote collector and bulletin board (BB) are modeled by the Environment agent (call it Env). This agent
contains local variables modeling the fact that the voting process is open and the values of ribbons on
the BB. These variables are observable by all voters, including the attacker. Env also contains private
variables used for collecting ribbons and disposes of the three actions Acte = {stop,collect,nop} for
waiting closing elections, collecting votes and, finally, looping after the end of the publication of the BB.

Elections are closed immediately after the voting starts. This peculiarity of our models avoids us
dealing with a vote collector which never stops the voting process, which may lead to the vacuous falsity
of the formulas checked unless some fairness property is enforced – and, for the time being, fairness is
not handled by our alternating bisimulation.

The agents representing voters have each a private variable representing their choice for a candidate.
Then they share three ”ballot” variables with Env. These variables represent the ribbons that are created
by the ”voting machine”. Casting the vote is modeled by creating the three ribbons, compatible with the
choice of each candidate. Votes are already cast in the initial state. Being visible by Env, the values of the
three ribbons are copied by Env on the (variables represented on the) BB in a random order. Each agent
has two actions: vote, by which the voter casts his/her vote, and nop, a non-voting or idle action. vote
is enabled only in the initial state, nop is enabled everywhere. All agent variables are never modified
during the voting process.

In the first model, denoted Gtot , for each agent choice, all configurations of the three ribbons which
are compatible with the agent’s choice may occur. The communication between each agent and Env is
entirely at Env’s charge, who has direct access to agents’ ribbons and copies them onto the BB. Copying
is also done at random: Env chooses a non-copied ribbon from a voter who has cast his vote (boolean
variables are defined to help Env identify these situations) and copies it onto a free position on the BB.

With the second model, denoted Glex, we model a voting machine which sorts, according to the
lexicographic order, the three ribbons produced for the agent’s choice, and places the largest one in the
first ”ballot” variable of the voter, the second largest in the second variable, and the smallest in the third
variable. Hence, for each choice of an agent, there are still several configurations of ribbons that are
produced, but we no longer produce all permutations of a configuration, but a single representative of
that permutation.

Finally, we modify Glex into a third model, in which Env no longer copies ribbons on the BB, but
rather counts the votes for each candidate by peeping at the ”ballot” variables of each voter. We use one
variable per candidate that counts the number of votes obtained by him and therefore the ribbons from
the BB are replaced with only information about the number of votes of each candidate. This model is
denoted Gcount .

Formally, in the case of Gtot for n voters and nc candidates, each global state has the form (vopen, pub,
(ribb`)1⩽`⩽3n,(chi,vi)1⩽i⩽n,(si j,ai j)1⩽i⩽n,1⩽ j⩽3) where:

8 Bisimulations for Verifying Strategic Abilitieswith an Application to ThreeBallot

1. The local state for voter i is (vopen, pub,ribb1,ribb2, ...ribb3n,vi,si1,si2,si3).
2. Boolean vopen holds true when the vote is opened and pub signals that all ribbons of agents that

have voted are published on the BB.
3. Integer 1 ⩽ chi ⩽ nc specifies the choice of agent i.
4. Boolean vi (1 ⩽ i ⩽ n) tells whether agent i has voted.
5. Integer variables si j (1 ⩽ j ⩽ 3) represent the ”ballots” of voter i. They are shared between each

agent and Env, who copies them onto the BB.
6. Integer variables ribb` (1 ⩽ ` ⩽ 3n) represent the BB.
7. Booleans ai j are used by Env for remembering which ballots si j have been copied on the BB.

Initial states are such that vopen = true, vi = f alse for all i ⩽ n, variables ribb` are undefined value
�, ai j = f alse and, for variables si j we have the following rules modeling the creation of a triple of
ribbons compatible with a choice of a candidate: for each voter i, let b jk = bi

jk be the bit representing the
bubble on the line corresponding with candidate k of the jth ballot of i’s vote, as given by chi. A tuple
(b jk)1⩽ j⩽3,1⩽k⩽nc is compatible with choice chi if the following properties hold:

1. if k = chi then ∃p ⩽ 3 s.t. bpk = 0 and ∀p′ ≠ p, bp′k = 1
2. if k ≠ chi then ∃p ⩽ 3 s.t. bpk = 1 and ∀p′ ≠ p, bp′k = 0

Denote B(chi) the set of bit tuples (b jk)1⩽ j⩽3,1⩽k⩽nc compatible with chi. Denote further by R(chi)
the transformation of these bit tuples into integer triples modeling the valid ballots compatible with the
choice chi, R(chi) = {(st j)1⩽ j⩽3 ∣ st j = ∑1⩽k⩽nc b jk ⋅2k−1,(b jk)1⩽ j⩽3,1⩽k⩽nc ∈ B(chi)}. (For instance, valid
triples of integers compatible with a voting intention for candidate 2 and nc = 2 are all permutations
of (3,2,0) plus all permutations of (2,2,1). Here, value 3 in the first triple, which corresponds to
si1 for some voter i, encodes the value (1,1,0) for the first ribbon (bi

1k)1⩽k⩽nc of the voter i.) Then
(si j)1⩽ j⩽3 ∈ R(chi) for each 1 ⩽ i ⩽ n,1 ⩽ j ⩽ 3.

Let ∣A∣ denote the cardinality of the set A. Transitions are then of the form:

(vopen, pub,(ribb`)1⩽`⩽3n,(chi,vi)1⩽i⩽n,(si j,ai j)1⩽i⩽n,1⩽ j⩽3)
(ae ,a1 ,a2,...,an)
ÐÐÐÐÐÐÐÐ→ (vopen′, pub′,(ribb′`)1⩽`⩽3n,(chi,v′i)1⩽i⩽n,(s′i j,a

′
i j)1⩽i⩽n,1⩽ j⩽3)

with:

1. vopen′ = f alse if (ae = stop or vopen = f alse) and vopen′ = true otherwise. Action ae = stop is the
only available action for Env if vopen = true.

2. For ai = vote, v′i = true, and for ai = nop, v′i = vi.
3. For ae = collect and ai = nop for all i we have the following rules:

(a) There exists some subset of pairs A ⊆ {1, ..,n}×{1, ..,3} with a′i j = ai j = true for all (i, j) ∈ A.
(b) There exists (i0, j0) /∈ A with a′i0, j0 = true, ai0, j0 = f alse and for all (i, j) /∈ A∪{(i0, j0)}, a′i j =

f alse.
(c) There exists some B ⊆ {1, ..,3n} with ∣B∣ = ∣A∣, ribb′` = ribb` for all ` ∈ B.
(d) There exists some k /∈B, 1 ⩽ k ⩽ 3n with ribbk = �, ribb′k = si0, j0 and ribb′` = � for all ` /∈B∪{k}.

4. Action ae = nop can only be executed when, for each i, either all ai j = true or vi = f alse, and its
effect is to modify only pub′ = true, all the other variables remaining unchanged.

In Glex, transitions are identical to the above, the only difference between Glex and Gtot being in the
initial states, more specifically in the configuration of variables si j. These are instantiated such that
(si j)1⩽ j⩽3 ∈ {max(Perm((st j)1⩽ j⩽3)) ∣ (st j)1⩽ j⩽3 ∈Rchi} for each 1 ⩽ i ⩽ n, the maximum being considered

F. Belardinelli, R. Condurache, C. Dima, W. Jamroga & A. V. Jones 9

under the lexicographic order and Perm((st j)1⩽ j⩽3) stands for the set of all permutations of the tuple
(st j)1⩽ j⩽3.

Finally, the iCGS Gcount is similar with Glex but all variables ribb` are replaced with nc variables
(cok)1⩽k⩽nc. The local state for agent i is then (vopen, pub,co1, . . . ,conc,vi,si1,si2,si3). The description
of transitions is then the same, excepting the case for ae = collect where items 3.(c)-3.(d) above (defining
the updates of variables ribb`), are replaced by the following:

3.(c’) For each 1 ⩽ k ⩽ nc, if a′i j ≠ ai j then co′k = cok+bi jk, where bi jk is the k-th least significant bit of si j,
otherwise co′k = cok. Also si j = s′i j.

The three models defined in this section seem naturally related w.r.t. some properties – in particular
those related with the attacker modifying the outcome of the vote or breaking the anonymity. Proposi-
tion 9 formalize this intuition by proving that the three models are bisimilar w.r.t. the attacker and a set
of atomic propositions suitable for expressing anonymity or coercion resistance.

Proposition 9. The iCGS Gtot , Glex, and Gcount are bisimilar w.r.t. the attacker and AP = {pchi= j ∣ 1 ⩽ i ⩽
n,1 ⩽ j ⩽ nc}.

The interest in simplifying the model is that checking anonymity or coercion resistance can be done
faster and with less memory on Gcount than on Glex, which, on its turn, requires less time and memory
than Gtot , as we will see in the last section. In this section we show that the three models are bisimilar
for the attacker, for the set of atomic propositions that refer only to choices of the agents. The fact which
formalizes the ”natural relation” between them and allows us to check a coercion resistance property on
the simplest one and then generalizing the results on the two others, in particular on the largest model.
Note that this bisimulation works because the properties do not refer to the status of the BB. For instance,
these bisimulations would not be useful for simplifying systems for verifiability [18].

5 Experimental Results

In this section we exhibit the improvements in running time when checking the same properties over the
three bisimilar models. The three models are checked with growing number of voters and candidates.
For our experiments, we have used the last version of MCMAS (1.2.2) [31]. Tests were made on a virtual
machine running Ubuntu 16.04.1 LTS on a Dell PowerEdge R720 server with two Intel Xeon E5-2650 8
core processors at 2GHz, and 128 GB of RAM. The .ispl files containing the tested models of the voting
system are available at [5].

The formulas that are verified on all these models represent a variant of coercion resistance [45].
They specify the fact that the attacker att has no strategy by which he could know how agent i has voted
(i ≠ att):

ϕi = ⟪att⟫F(pub∧(vi→ ⋁
1⩽ j⩽nc

Katt(j = chi)))

(Recall that, in our model the attacker is also a voter, which corresponds with situations in which a voter
fully cooperates with the attacker).

MCMAS provides two options, -atlk 2 or -uniform, for checking ATL formulas with uniform
strategies, with some differences in the semantics of ATL formulas (-uniform is similar with “irrevo-
cable strategies” of [1]). We observed that neither of these options were stable, and lead to a number
of experiments ending with inconsistent results or MCMAS terminating abnormally. We refer the in-
terested reader to [10]. We then checked the coercion resistance property with -atlk 1 option, which
utilizes ATL with perfect information. This is nevertheless consistent with our theoretical setting since

10 Bisimulations for Verifying Strategic Abilitieswith an Application to ThreeBallot

all tests show that the formulas are false, and whenever a positive ATL formula is false under the perfect
information semantics, it is also false under the imperfect information semantics, and hence preserved
by alternating bisimulations.

For the total model Gtot the only configurations for which MCMAS produces results in reasonable
time are shown in Table 1, which gives running times and state space (denoted ∣S∣). For Glex, the state
space is smaller and, therefore, the model with three voters and three candidates gives a also reasonable
running time. For all other cases, MCMAS outputs the result faster than for Gtot . Statistics are given in
Table 2. Finally, the model Gcount can be verified much faster, the number of reachable states decreasing
substantially, allowing for verifying the formula for 4 voters and 3 candidates in 44 seconds. Statistics
are given in Table 3. In all these tables, NA means a 2 hours timeout has been reached without obtaining
any result.

voters
2v 3v 4v

#
ca

nd
id

.

2c 0.93 s 7.765 s NA∣S∣ = 3.49091e+06 ∣S∣ = 1.46625e+10

3c 23.61 s NA NA∣S∣ = 2.44048e+08

Table 1: MCMAS statistics for Gtot

voters
2v 3v 4v

#
ca

nd
id

.

2c 0.38 s 3.42 s 823.12 s
∣S∣ = 196388 ∣S∣ = 1.92068e+08 ∣S∣ = 2.26211e+11

3c 15.32 s 4807.79 s NA∣S∣ = 8.09895e+06 ∣S∣ = 1.03982e+11

Table 2: MCMAS statistics for Glex

voters
2v 3v 4v 5v

#
ca

nd
id

.

2c 0.15 s 0.72 s 2.39 s 17.03 s
∣S∣ = 4406 ∣S∣ = 39201 ∣S∣ = 3.08043e+06 ∣S∣ = 6.57133e+07

3c 0.44 s 4.29 s 44.18 s NA∣S∣ = 101993 ∣S∣ = 3.81446e+06 ∣S∣ = 2.17425e+09

Table 3: MCMAS statistics for Gcount

Using Proposition 9 and the previous experimental results, we deduce the following:
Proposition 10. For each initial state q0, (Gtot ,q0) ⊧ ϕi for nc+n ⩽ 8 and nc ∈ {2,3}.

6 Conclusions

In this paper we advanced the state-of-the-art in the model theory of the strategy logic ATL under im-
perfect information and imperfect recall. Specifically, we introduced a novel notion of (bi)simulation on
iCGS that preserves the interpretation of ATL formulas (Theorem 8). Then, we applied this theoretical
result to the verification of the ThreeBallot voting system, a relevant voting protocol without cryptogra-
phy. In particular, we model check the “simpler” bisimilar abstractions of the ThreeBallot system, and
then transfer the result to the original model in virtue of Theorem 8. As reported in the experimental re-
sults, the gains in terms of both time and memory resources are significant. The literature on both logics
for strategies and the formal verification of voting protocols is extensive and rapidly growing. Hereafter
we only consider the works most closely related to the present contribution.

Bisimulations for ATL. An in-depth study of model equivalences induced by various temporal logics
appears in [23]. Bisimulations for ATL with perfect information have been introduced in [3]. Since then
there have been various attempts to extend these to imperfect information contexts [1, 17]. In [17, 32]
non-local model equivalences for ATL with imperfect information have been put forward. However,
to our knowledge these works do not deal with the imperfect information/imperfect recall setting here
considered, nor do they provide a local account of bisimulations.

Verification of Voting Protocols. The present contribution is inspired by recent works on the ver-
ification of voting protocols, mostly by using the π-calculus and CSP [18, 25, 43]. In [4] the authors

F. Belardinelli, R. Condurache, C. Dima, W. Jamroga & A. V. Jones 11

define two semantic criteria for single transferable vote (STV) schemes, then show how bounded model-
checking and SMT solvers can be used to check whether these criteria are met. In [35] anonymity proper-
ties of voting protocols are verified by using CSP. In particular, in [36] the authors construct CSP models
of the ThreeBallot system and use them to produce an automated formal analysis of their anonymity
properties. One issue we identify with this approach is that the system model and the property to be veri-
fied are not clearly distinguished. On the contrary, multi-agent logics allow a clear separation of the two,
as well as a wider variety of properties, also involving the existence of attacker strategies. Specifically,
in our experiments we are able to model check ThreeBallot systems with 5 voters and 2 candidates, or 4
voters and 3 candidates, while in [36] results are provided for at most 3 voters and 2 candidates.

Future Work. We envisage several extensions of the present contribution. First, it is of interest to
develop bisimulations for iCGS with perfect and bounded recall, as in many application domains agents
do have some memory of past states and actions. Also for the verification of voting protocols, it is key to
extend ATL with epistemic modalities to express naturally properties of anonymity and confidentiality.
We remarked that individual knowledge is expressible in the subjective semantics. However, no such
result holds for the objective interpretation, nor common knowledge happens to be definable. Finally, we
aim at automating and implementing the procedures described in this paper in a model checking tool for
the formal verification of (electronic) voting protocols.

Acknowledgements. F. Belardinelli acknowledges the support of the ANR JCJC Project SVeDaS (ANR-
16-CE40-0021). W. Jamroga acknowledges the support of the National Centre for Research and Devel-
opment (NCBR), Poland, under the project VoteVerif (POLLUX-IV/1/2016).

References
[1] T. Ågotnes, V. Goranko & W. Jamroga (2007): Alternating-time Temporal Logics with Irrevocable Strategies.

In: Proceedings of TARK XI, pp. 15–24.
[2] R. Alur, T. A. Henzinger & O. Kupferman (2002): Alternating-Time Temporal Logic. Journal of the ACM

49(5), pp. 672–713.
[3] R. Alur, Th. A. Henzinger, O. Kupferman & M. Y. Vardi (1998): Alternating refinement relations. In: In

Proceedings of the Ninth International Conference on Concurrency Theory (CONCUR’98), volume 1466 of
LNCS, Springer-Verlag, pp. 163–178.

[4] B. Beckert, R. Goré, C. Schürmann, Th. Bormer & J. Wang (2014): Verifying Voting Schemes. J. Inf. Secur.
Appl. 19(2), pp. 115–129, doi:10.1016/j.jisa.2014.04.005.

[5] F. Belardinelli, R. Condurache, C. Dima, W. Jamroga & A. Jones: ISPL Files for ThreeBallot Voting Protocol.
https://www.dropbox.com/sh/ferdoqe9hi4cmbx/AAA1hLy0grmCoBVqZf6wbKLWa?dl=0. November
2016.

[6] P. Blackburn, M. de Rijke & Y. Venema (2001): Modal Logic. Cambridge Tracts in Theoretical Computer
Science 53, Cambridge University Press.

[7] I. Boureanu, A. V. Jones & A. Lomuscio (2012): Automatic Verification of Epistemic Specifications Under
Convergent Equational Theories. In: Proceedings of the 11th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS’12), IFAAMAS, pp. 1141–1148.

[8] N. Bulling, J. Dix & W. Jamroga (2010): Model Checking Logics of Strategic Ability: Complexity. In:
Specification and Verification of Multi-agent Systems, Springer, pp. 125–159.

[9] N. Bulling & W. Jamroga (2014): Comparing variants of strategic ability: how uncertainty and memory
influence general properties of games. Autonomous Agents and Multi-Agent Systems 28(3), pp. 474–518.

[10] S. Busard, Ch. Pecheur, H. Qu & F. Raimondi (2015): Reasoning about memoryless strategies under partial
observability and unconditional fairness constraints. Information and Computation 242, pp. 128–156.

http://dx.doi.org/10.1016/j.jisa.2014.04.005
https://www.dropbox.com/sh/ferdoqe9hi4cmbx/AAA1hLy0grmCoBVqZf6wbKLWa?dl=0

12 Bisimulations for Verifying Strategic Abilitieswith an Application to ThreeBallot

[11] I. Cervesato, N. A. Durgin, P. Lincoln, J. C. Mitchell & A. Scedrov (1999): A Meta-Notation for Protocol
Analysis. In: Proceedings of the 12th IEEE Computer Security Foundations Workshop (CSFW’99), IEEE
Computer Society, pp. 55–69.

[12] R. Chadha, S. Kremer & A. Scedrov (2006): Formal Analysis of Multiparty Contract Signing. J. Autom.
Reasoning 36(1-2), pp. 39–83, doi:10.1007/s10817-005-9019-5.

[13] K. Chatterjee, T. Henzinger & N. Piterman (2007): Strategy Logic. In: Proceedings of the 18th International
Conference on Concurrency Theory (CONCUR07), 4703, pp. 59–73.

[14] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu & H. Veith (2000): Counterexample-Guided Abstraction Re-
finement. In: Proceedings of the 12th International Conference on Computer Aided Verification (CAV00),
Lecture Notes in Computer Science 1855, Springer, pp. 154–169.

[15] E. M. Clarke, O. Grumberg & D. Long (1994): Model Checking and Abstractions. ACM Transactions on
Programming Languages and Systems 16(5), pp. 1512–1542.

[16] V. Cortier (2015): Formal Verification of e-Voting: Solutions and Challenges. ACM SIGLOG News 2(1), pp.
25–34, doi:10.1145/2728816.2728823.

[17] M. Dastani & W. Jamroga (2010): Reasoning about Strategies of Multi-Agent Programs. In: Proceedings of
AAMAS2010, pp. 625–632.

[18] S. Delaune, S. Kremer & M. Ryan (2009): Verifying Privacy-Type Properties of Electronic Voting Protocols.
Journal of Computer Security 17(4), pp. 435–487.

[19] G. Denker & J. K. Millen (2002): Modeling Group Communication Protocols Using Multiset Term Rewriting.
Electr. Notes Theor. Comput. Sci. 71, pp. 20–39.

[20] C. Dima & F. L. Tiplea (2011): Model-checking ATL under Imperfect Information and Perfect Recall Seman-
tics is Undecidable. CoRR abs/1102.4225.

[21] J. van Eijck & S. Orzan (2007): Epistemic Verification of Anonymity. Electr. Notes Theor. Comput. Sci. 168,
pp. 159–174, doi:10.1016/j.entcs.2006.08.026.

[22] P. Gammie & R. van der Meyden (2004): MCK: Model Checking the Logic of Knowledge. In: Proceedings of
16th International Conference on Computer Aided Verification (CAV04), Lecture Notes in Computer Science
3114, Springer, pp. 479–483.

[23] U. Goltz, R. Kuiper & W. Penczek (1992): Propositional Temporal Logics and Equivalences. In: Proceedings
of CONCUR ’92, pp. 222–236, doi:10.1007/BFb0084794.

[24] V. Goranko & W. Jamroga (2004): Comparing Semantics for Logics of Multi-agent Systems. Synthese 139(2),
pp. 241–280.

[25] C. A. R. Hoare (1978): Communicating Sequential Processes. Commun. ACM 21(8), pp. 666–677.
[26] W. Jamroga & J. Dix (2006): Model checking abilities under incomplete information is indeed δ

2
P-complete.

In: Proceedings of the 4th European Workshop on Multi-Agent Systems EUMAS’06, Citeseer, pp. 14–15.
[27] W. Jamroga & W. van der Hoek (2004): Agents that Know How to Play. Fundamenta Informaticae 62, pp.

1–35.
[28] M. Kacprzak, W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola, M. Szreter, B. Woźna & A. Zbrzezny

(2008): VerICS 2007 - a Model Checker for Knowledge and Real-Time. Fundamenta Informaticae 85(1), pp.
313–328.

[29] R. Küsters, T. Truderung & A. Vogt (2011): Verifiability, Privacy, and Coercion-Resistance: New Insights
from a Case Study. In: 32nd IEEE Symposium on Security and Privacy, S&P 2011, 22-25 May 2011,
Berkeley, California, USA, IEEE Computer Society, pp. 538–553, doi:10.1109/SP.2011.21.

[30] F. Laroussinie, N. Markey & G. Oreiby (2008): On the Expressiveness and Complexity of ATL. Logical
Methods in Computer Science 4(2:7), doi:10.2168/LMCS-4(2:7)2008.

[31] A. Lomuscio, H. Qu & F. Raimondi (2015): MCMAS: A Model Checker for the Verification
of Multi-Agent Systems. Software Tools for Technology Transfer, doi:10.1007/s10009-015-0378-x.
Http://dx.doi.org/10.1007/s10009-015-0378-x.

http://dx.doi.org/10.1007/s10817-005-9019-5
http://dx.doi.org/10.1145/2728816.2728823
http://dx.doi.org/10.1016/j.entcs.2006.08.026
http://dx.doi.org/10.1007/BFb0084794
http://dx.doi.org/10.1109/SP.2011.21
http://dx.doi.org/10.2168/LMCS-4(2:7)2008
http://dx.doi.org/10.1007/s10009-015-0378-x

F. Belardinelli, R. Condurache, C. Dima, W. Jamroga & A. V. Jones 13

[32] M. Melissen (2013): Game Theory and Logic for Non-repudiation Protocols and Attack Analysis. Ph.D.
thesis, University of Luxembourg.

[33] F. Mogavero, A. Murano, G. Perelli & M. Y. Vardi (2014): Reasoning About Strategies: On the Model-
Checking Problem. ACM Transactions in Computational Logic 15(4), pp. 34:1–34:47, doi:10.1145/2631917.

[34] F. Mogavero, A. Murano & M. Vardi (2010): Reasoning About Strategies. In: Proceedings of the 30th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS10),
8, Schloss Dagstuhl, pp. 133–144.

[35] M. Moran, J. Heather & S. Schneider (2014): Verifying anonymity in voting systems using CSP. Formal
Aspects of Computing 26(1), pp. 63–98, doi:10.1007/s00165-012-0268-x.

[36] M. Moran, J. Heather & S. Schneider (2016): Automated anonymity verification of the ThreeBallot and VAV
voting systems. Software & Systems Modeling 15(4), pp. 1049–1062, doi:10.1007/s10270-014-0445-x.

[37] M. R. Neuhäußer & J. P. Katoen (2007): Bisimulation and Logical Preservation for Continuous-Time Markov
Decision Processes. In: CONCUR 2007 - Concurrency Theory, 18th International Conference, CON-
CUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceedings, Lecture Notes in Computer Science 4703,
Springer, pp. 412–427, doi:10.1007/978-3-540-74407-8 28.

[38] M. Pauly (2002): A Modal Logic for Coalitional Power in Games. Journal of Logic and Computation 12(1),
pp. 149–166, doi:10.1093/logcom/12.1.149.

[39] R. Rivest & W. Smith (2007): Three Voting Protocols: ThreeBallot, VAV, and Twin. In: Proceedings of
USENIX/ACCURATE Electronic Voting Technology Workshop (EVT).

[40] R. L. Rivest (2006): The ThreeBallot Voting System. http://theory.lcs.mit.edu/~rivest/

Rivest-TheThreeBallotVotingSystem.pdf.
[41] P. A. Ryan (2009): The Computer Ate My Vote. In Paul Boca, Jonathan P. Bowen & Jawed Siddiqi, editors:

Formal Methods: State of the Art and New Directions, chapter 5, Springer Verlag, pp. 148–184.
[42] P. A. Ryan, S. Schneider & V. Teague (2015): End-to-End Verifiability in Voting Systems, from Theory to

Practice. IEEE Security & Privacy 13(3), pp. 59–62, doi:10.1109/MSP.2015.54.
[43] S. Schneider & A. Sidiropoulos (1996): CSP and Anonymity. In: Proceedings of the 1996 European Sympo-

sium on Research in Computer Security (ESORICS’96), Lecture Notes in Computer Science 1146, Springer-
Verlag, pp. 198–218.

[44] H. Schnoor (2014): Epistemic and Probabilistic ATL with Quantification and Explicit Strategies. In: Proceed-
ings of 5th International Conference on Agents and Artificial Intelligence ICAART 2013, Communications
in Computer and Information Science 449, Springer, pp. 131–148.

[45] M. Tabatabaei, W. Jamroga & P. A. Ryan (2016): Expressing Receipt-Freeness and Coercion-Resistance in
Logics of Strategic Ability: Preliminary Attempt. In: Proceedings of the 1st International Workshop on AI
for Privacy and Security PrAISe 2016, ACM, pp. 1:1–1:8.

http://dx.doi.org/10.1145/2631917
http://dx.doi.org/10.1007/s00165-012-0268-x
http://dx.doi.org/10.1007/s10270-014-0445-x
http://dx.doi.org/10.1007/978-3-540-74407-8_28
http://dx.doi.org/10.1093/logcom/12.1.149
http://theory.lcs.mit.edu/~rivest/Rivest-TheThreeBallotVotingSystem.pdf
http://theory.lcs.mit.edu/~rivest/Rivest-TheThreeBallotVotingSystem.pdf
http://dx.doi.org/10.1109/MSP.2015.54

	Introduction
	The Formal Setting
	Simulations and Bisimulations
	Three-Ballot Voting Protocol
	iCGS Model

	Experimental Results
	Conclusions

